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In order to accurately demonstrate the material behavior during numerical simulation of
thermoforming, the critical material parameters of any specific polymeric material need to
be determined properly. In this study, acrylic sheets (Poly(methyl methacrylate), PMMA) of
both opaque and transparent nature were chosen as the sample materials due to their
widespread usage for the manufacturing of bathwares and kitchen appliances. Hyperelastic
theory (e.g., Mooney-Rivlin and Ogden models) was employed with experimental
verification to obtain the critical material parameters of PMMA. By conducting uniaxial
tensile tests at elevated temperatures between 150 and 190◦C and utilising the least square
method (LSM), the major material parametric functions were derived in terms of forming
temperature. Preliminary application on simulation of free inflation of a bubble profile
resulted in promising agreement with the experimental data validating the developed
parameters. C© 2005 Springer Science + Business Media, Inc.

Nomenclature

C Constant of curve-fitting exponential func-
tion for two-term Mooney-Rivlin model
(MPa)

Ci j Empirically determined constants of strain
energy function (i = 0, 1, 2 . . . M and j =
0, 1, 2 . . . N )

C10 Two-term Mooney-Rivlin model material pa-
rameter (MPa)

C01 Two-term Mooney-Rivlin model material pa-
rameter (MPa)

E Young’s modulus for infinitesimal deforma-
tion (MPa)

E ′ Storage modulus (Pa)
E ′′ Loss modulus (Pa)
Fm(λ) Fitted model regression function in terms of

the stretch ratio λ

f Frequency (Hz)
H Vertical distance from the apex of the inflated

bubble (mm)
Ii Strain tensor invariants in the i-th directions

(i = 1, 2, 3)
k Constant of curve-fitting exponential function

for two-term Mooney-Rivlin model (1/◦C)
l Specimen length after thermal conditioning

(mm)
l0 Original length of the specimen in the shrink-

age test (mm)
L0 Original gauge length of acrylic specimen

(mm)

∗Author to whom all correspondence should be addressed.

L Length after uniaxial tension (mm)
M Constant of curve-fitting exponential func-

tion for single term Ogden model (MPa)
n Constant of curve-fitting exponential func-

tion for single term Ogden model (1/◦C)
Q Minimum of sum of the squared deviations
R2 R-squared value
T Temperature (◦C)
Tg Glass transition temperature (◦C)
t Time at final configuration of the material (s)
t0 Time in the initial state of the material (s)
W Strain energy function
ym Observed scattered values
α Single term Ogden model material parameter
αi Ogden model material parameter (i = 1, 2,

3. . . )
β Single term Ogden model material parameter

(MPa)
βi Ogden model material parameter (i = 1, 2,

3. . . ) (MPa)
tanδ Loss tangent (tanδ = E ′′/E ′)
tanδmax Maximum value of loss tangent
λ Principal stretch ratio
λi Stretch ratio in the i-th directions (i = 1, 2, 3)
σBT True stress of equibiaxial tension (MPa)
σUT True stress of uniaxial tension (MPa)
σ11 Cauchy stress tensor in the first principal di-

rection (MPa)
σ22 Cauchy stress tensor in the second principal

direction (MPa)
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1. Introduction
Thermoforming is considered to be a “secondary” plas-
tic manufacturing process in which a polymeric sheet
is reheated and moulded using vacuum or pressure [1].
In the thermoforming processes, the quality of the final
part is greatly dependent on the material flow and the re-
sulting thickness distribution. The traditional “trial and
error” methods used for optimising these manufactur-
ing processes, as done today, are quite time-consuming
and expensive, and hence numerical simulation has
been introduced as a powerful analytical tool for pro-
cess optimisation to avoid the waste of resources.

For numerical simulations of thermoforming poly-
meric materials, hyperelastic and viscoelastic models
are the two commonly used rheological models. The
emphasis of current study is on the hyperelastic models
due to their better suitability for materials, which are
isotropic, highly elastic and incompressible under the
condition of relatively high strain rate. Research has
been carried out on applying both numerical and ana-
lytical models [1–7], which are based on the strain en-
ergy function. In addition, the material parameters ob-
tained from these theoretical models are considered to
be able to reflect the actual material behaviour, such as
the non-linearity typically associated with large strains
and large deformation, and are valid for predicting the
thickness distribution in a simulation. In this study, both
of the well-known Mooney-Rivlin and Ogden models
are adopted as the hyperelastic models.

Previous work [5–9] has shown that the characteri-
sation of a polymeric material, such as PMMA, at the
elevated temperatures can be carried out with more so-
phisticated facilities; however, the classic uniaxial and
equibiaxial tensile tests can also be used for similar
characterisation processes [2, 10–12] to achieve the
same results. Therefore in this study, uniaxial tensile
tests at elevated temperatures have been used in con-
junction with the least square method (LSM) to deter-
mine the critical material parameters for applying in the
hyperelastic models.

This paper describes the theoretical background of
the two hyperelastic models and the designed experi-
mental programmes with the aim of determining the in-
fluences of temperature-dependent material parameters
so that the finite element method (FEM) based analyti-
cal tool PAM-FORMTM [13] may be fruitfully used for
modelling the thermoforming processes. Furthermore,
the preliminary FEM application of a bubble inflation
case is used to demonstrate the validity of the obtained
material parameters in the hyperelastic models.

2. Theory and constitutive relationships
2.1. Strain energy function
Generally hyperelastic models demonstrate the mate-
rial strain levels that exceed the simple Hookean spring
condition where stress is proportional to strain and the
proportionality constant is the Young’s modulus [3].
Consequently the work done by the stresses during a
deformation process is dependent solely on the initial
state at time t0 and the final configuration at time t , the
behaviour of the material is said to be path-independent
and the material is termed as “hyperelastic” [14].

Hyperelastic models can be developed by construct-
ing the form of strain energy function W for an isotropic
material [10]. This function can be explicitly expressed
by the sum of a series of terms involving (I1 − 3)
and (I2 − 3) with the assumption of incompressibility
(I3 = 1),

W =
M,N∑

i, j=0

Ci j (I1 − 3)i (I2 − 3) j (1)

where Ci j are empirically determined material param-
eters and I1, I2, I3 are the principal strain invariants.
When the material is undeformed, both W and C00
are zero. This equation is a general form of strain en-
ergy function, from which a significant number of hy-
perelastic models and theories have been developed;
nevertheless each of them has its individual restriction
on material selection and properties, thermoforming
methods and the correlation with the experimental re-
sults [12]. The Mooney-Rivlin and Ogden models are
two typical examples developed from this strain energy
function.

2.2. Mooney-Rivlin model
By performing experiments on two different types
of vulcanised rubber, Rivlin and Saunders [15] con-
structed their own strain energy function given by

W = C10(I1 − 3) + f (I2 − 3) (2)

where the function, f (I2 − 3), was determined by ex-
periments. It can be easily found that if f (I2 − 3) is
assumed to be proportional to (I2 −3) due to the exper-
imental observation of direct proportionality of shear
stress to the shear angle in simple shear, Rivlin and
Saunders’ strain energy function can be simplified as
the Mooney function [16],

W = C10(I1 − 3) + C01(I2 − 3) (3)

Therefore, Equation 3 is also called Mooney-
Rivlin strain energy function or Mooney-Rivlin model.
Mooney’s strain energy function is widely used by
many theoretical investigators and analysts to solve
the large elastic deformations of rubber-like materials
[1, 3, 5, 17, 18].

For uniaxial tension (i.e., λ1 = λ, λ2 = λ3 = 1√
λ

),
the constitutive relation becomes

σUT = σ11 = 2C10

(
λ2 − 1

λ

)
+ 2C01

(
λ − 1

λ2

)
(4)

where λi is the stretch ratio in i-th direction (i =
1, 2, 3), λ is the principal stretch ratio (=L/L0, where
L0 and L denote the gauge lengths before and after the
test), σUT and σ11 are the true stress of uniaxial tension
and Cauchy Stress tensor in the first principal direction
respectively. When λ → 1, the derivative of Equation 4
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can be simplified as

E = lim
λ→1

∂σ11

∂λ
= 6(C10 + C01) = Ce−kT (5)

where E is Young’s modulus for infinitesimal defor-
mation, C and k are two constants obtained from the
curve-fitted exponential function using LSM, and T is
the forming temperature.

Similarly, the constitutive relation for equibiaxial
tension (i.e., λ1 = λ2 = λ) can be expressed as

σBT = σ11 = σ22 = 2C10

(
λ2 − 1

λ4

)
+ 2C01

(
λ4 − 1

λ2

)

(6)

where σBT and σ22 are the true stress of equibiaxial
tension and Cauchy Stress tensor in the second principal
direction respectively.

2.3. Ogden model
Alternatively, the strain energy function defined by
Ogden [19] correlated with the principal stretch ratios
instead of the principal strain invariants is given by

W =
n∑

i=1

βi

αi

(
λ

αi

1 + λ
αi

2 + λ
αi

3 − 3
)

(7)

where αi and βi are experimentally determined material
parameters. These two parameters can be non-integer
and/or negative with only one restriction that the value
of the strain energy function W in Equation 7 must
always remain positive.

For uniaxial tension, the constitutive relation of
Equation 7 may be shown as

σUT = σ11 =
r∑

i=1

βi
[
λαi − λ− αi

2
]

(8)

In the special case of the single-term Ogden model
(i.e., i = 1), when λ → 1 [1], the derivative of
Equation 8 can be simplified as

E = lim
λ→1

∂σ11

∂λ
= 3

2
αβ = Me−nT (9)

where M and n are again two constants obtained from
the curve-fitted exponential function using LSM and T
is the forming temperature. Both Equations 5 and 9 are
the simplified single exponential correlations between
the Young’s modulus and forming temperature, because
the actual curve-fitted functions are more complex con-
taining a series of exponential terms.

The constitutive relation for equibiaxial tension can
be shown as

σBT = σ11 = σ22 =
r∑

i=1

βi [λ
αi − λ−2αi ] (10)

From Equations 8 and 10, apparently a large number
of material parameters are difficult to obtain empiri-
cally by doing least square curve-fitting [20]. Since the

single-term Ogden formulation can depict good ma-
terial characterisation without resulting in significant
adverse influence on the numerical simulation of ther-
moforming, it has been adopted effectively as the back-
bone of the hyperelastic model for numerical analysis.

3. Experimental details
3.1. Materials
Acrylic (PMMA) sheets, are very suitable for thermo-
forming process in the plastic moulding manufacturing.
Therefore, in order to understand the material behaviour
of PMMA under thermoforming through experimen-
tal and numerical analyses, two types of commercially
available acrylic sheets: SHINKOLITE©R sanitary grade
(opaque, 3 mm thick) and general-purpose grade (trans-
parent, 2.76 mm thick) were used in this study.

3.2. Viability of characterisation tests
To ensure accurate application of material characteris-
tics in the analytical models, Three types of tests in-
cluding DMTA test, shrinkage test and hot tensile test
were conducted.

The DMTA test was used to determine the glass tran-
sition temperature (Tg) of PMMA, below which the
change from rubbery to glassy state of any particular
polymer takes place [20]. Once Tg of the PMMA sheet
was decided, the forming temperature was set 30–40◦C
above Tg [3]. In this study, Tg, measured by DMTA test
is defined as the peak of loss tangent (tanδ) vs. tem-
perature curve, where tan δ is ratio (E ′′/E ′) of the loss
modulus E ′′ over the storage modulus E ′ [21].

The purpose of shrinkage test was to investigate
whether the received PMMA sheets possessed any di-
rectional properties (anisotropy) due to the molecular
orientation and the manufacturing method. It is to be
noted that anisotropic material properties may greatly
affect the implementation of isotropic hyperelastic
materials.

Due to the rubbery material behaviour of PMMA at
elevated temperatures where thermoforming was per-
formed, hot tensile test was set up to account for not only
high temperature, but also the large strain at relatively
high strain rate and the viscous state of the softened
acrylic material. In addition, hot tensile tests provided
a reasonable set of temperature dependent data under
uniaxial tension to predict PMMA material parameters
in the hyperelastic models for thermoforming process
simulation. Interestingly this might provide the plastic
engineers a good and fast empirical methodology to re-
place the more complex biaxial tensile test as well as
sustain the viable process simulation results.

3.3. Material characterisation and results
In DMTA test, specimens were produced with di-
mensions of 40 mm long ×10 mm wide from both
materials. Thermal analyser DMTA V (Rheometric Sci-
entific, Inc., USA) was used in the three-point bend-
ing configuration under oscillations of varied frequency
(0.1–10 Hz) at the temperature range from 90 to 150◦C.
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Figure 1 Schematic of data acquisition system in the hot tensile tests using the non-contact method.

The ramp rate for the DMTA test was controlled at
2◦C/min by liquid nitrogen flow.

Shrinkage tests were conducted by elevating the tem-
perature to 160, 170, 180 and 190◦C, which were akin
to the real forming condition in the thermoforming pro-
cesses. Specimens of 110 mm × 110 mm square sheets
cut from both edges and the central parts of the received
acrylic sheets were prepared with four marking lines in
the 0◦, 45◦, 90◦ and 135◦ directions. Each square sheet
was heated up to the prescribed temperature and main-
tained at that temperature for about 30 min before being
cooled down to room temperature. The length of each
marked line was measured twice, once before heating
and once after the heating-cooling cycle (l). The change
of length measured in each direction before and after
thermal conditioning was used to calculate the shrink-
age (%).

Hot tensile tests were carried out using an Instron
tensile testing machine incorporated with an envi-
ronmental chamber. The crosshead speed was set as
250 mm/min for all the tests and desirable tempera-
tures were from 150 to 190◦C with 10◦C increment.
Specimens with the dimensions of 63.5 mm long × 10
mm wide were prepared with two lines etched 7 mm
apart as the original gauge length in the middle por-
tion of the test specimens. Self-tightening jaws were
adopted to prevent the slippage of the specimen dur-
ing the test due to the change of material state at the
elevated temperature. A thermocouple was attached on
the specimen to monitor the correct material temper-
ature for test. Furthermore, for large strains at high
strain rate, an ordinary extensometer was no longer suit-
able for measuring the deformation; therefore, video
camera was used to record the material deformation
process for the photographic analysis of the stress-
strain variation, Fig. 1, and to calculate the stretch ra-

tio of the specimen. After comparing the results with
the computer controlled crosshead movement, reliable
data of the material deformation could be obtained
subsequently for establishing the stress-stretch ratio
curves.

In DMTA tests, the tanδmax and the corresponding Tg
values at different frequencies from 0.1 to 10 Hz are
listed in Table I. Fig. 2 shows the change of loss tan-
gent against temperature at the frequency of 1 Hz for
both types of acrylic sheets. It is clear that when the
temperature is raised above the glass transition tem-
perature, the loss tangent curves exhibit a decreasing
trend as the temperature increases up to about 160◦C.
After that the values of the loss tangent flatten out de-
spite further increase in temperature. As the values of
the loss tangent at these temperatures are well below 1,
which implies that the storage modulus becomes bigger
than loss modulus (E ′ > E ′′), the chain rotation and
uncoiling for the long chain molecules of PMMA take
place with a minor viscous effect, so that the rubber-
like behaviour is manifested [1, 22]. It further empha-
sises the suitability of adopting hyperelastic models
in the numerical simulation of thermoforming acrylic
sheets.

TABLE I Glass Transition Temperatures of PMMA at multi-
frequencies ranging from 0.1 to 10 Hz at the ramp rate 2◦C/min

Opaque Transparent

Frequency ( f in Hz) tanδmax Tg (◦C) tanδmax Tg (◦C)

0.1 2.7334 116.88 2.1211 125.34
0.3 1.5381 120.72 1.6411 129.24

1 1.6094 124.67 1.6674 132.76
5 1.6033 130.72 1.6208 138.90

10 1.6187 134.00 1.6228 141.79
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Figure 2 Typical loss tangent (tanδ) vs. temperature curves at the frequency of 1 Hz with the ramp rate of 2◦C/min.

The results of shrinkage tests show that a shrinkage
of 1.5 to 2.0% was observed at all test temperatures, the
change of temperature level only had a minor effect on
both opaque and transparent sheets and the values in
different directions exhibited no dramatic discrepancy.
As a consequence, these acrylic sheets have been con-
firmed to have the minimal orientation above their glass
transition temperatures and may be treated as isotropic
materials for further computer simulation using PAM-
FORMTM—an explicit finite element computer code
based on Ogden or Mooney-Rivlin model that adopts
an isotropic constitutive law.

From the hot tensile tests, the associated true stress
level was calculated with each stretch ratio obtained us-
ing both photographic and crosshead movement meth-
ods, Fig. 3. Even though more precise results of stretch
ratio calculation could be produced with photographic
analysis, the process of analysing one specimen became
much more tedious. In order to cope with the large num-
ber of specimens, the results based on the crosshead
movements appeared to be accurate enough to justify
their further use in this study. This observation also got
support from Lai and Holt [23, 24].

For deriving the major material parametric functions,
these tensile test data have been curve-fitted with a
two-term Mooney-Rivlin model and a single-term Og-
den model based on general non-linear LSM criterion,
Equation 11.

Q = min

{ N∑

M=1

[Fm(λ) − ym]2
}

(11)

where Q is the minimum of sum of the squared devi-
ations, which preferably should be as close to zero as
possible; Fm(λ) is a fitted model regression function
in terms of the stretch ratio λ and ym are the observed
scattered values (experimental data).

Figure 3 Comparison of true stress vs. stretch ratio data according to
the crosshead movement and photographic measurement of deformation
respectively for opaque acrylic sheet at 500 mm/min crosshead speed
and temperature of 180◦C.

A simple regression based on the “trial and error”
method to achieve the optimal parameters was ap-
plied using the “Solver” tool of MS Excel©R program.
Material parameters in these two hyperelastic mod-
els were determined using Equations 4 and 8 with
non-constraints in Mooney-Rivlin model and partially
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Figure 4 True stress vs. stretch ratio curves for opaque acrylic sheets at elevated temperatures from 150 to 190◦C with the crosshead speed of
250 mm/min. Curve-fitting (—) with hyperelastic models using the least square method: (a) two term Mooney-Rivlin model and (b) single Ogden
model.

Figure 5 True stress vs. stretch ratio curves for transparent acrylic sheets at elevated temperatures from 150 to 190◦C with the crosshead speed of
250 mm/min. Curve-fitting (—) with hyperelastic models using the least square method: (a) two term Mooney-Rivlin model and (b) single Ogden
model.

bound constraints (0 < β ≤ 10 for opaque PMMA
and 0 < β ≤ 150 for transparent PMMA) in Ogden
model. Curves of true stress vs. stretch ratio at various
temperatures are shown in Figs 4 and 5. In addition,

T ABL E I I Mooney-Rivlin material parameters for acrylic sheets (opaque and transparent) between 150 and 190◦C at the crosshead speed of
250 mm/min

Temperature C10 C01 6(C10 + C01) limλ→1
dσ
dλ

Type (◦C) (MPa) (MPa) (MPa) (MPa) Q

Opaque 150 −0.0014 0.2920 1.7441 1.7067 0.0150
160 −0.0057 0.2455 1.4390 1.4124 0.0403
170 0.0007 0.1998 1.2028 1.1778 0.0680
180 0.0073 0.1443 0.9096 0.8931 0.0417
190 0.0086 0.1132 0.7304 0.7185 0.0273

Transparent 150 −0.0303 0.4503 2.5202 2.4650 0.0038
160 −0.0285 0.4065 2.2679 2.2231 0.0173
170 −0.0453 0.3596 1.8858 1.8483 0.0151
180 −0.0452 0.2988 1.5216 1.4847 0.0077
190 −0.0456 0.2331 1.1255 1.1006 0.0033

Tables II and III show the obtained material parameters
of the two hyperelastic models along with the minimum
values of Q and limλ→1

dσ
dλ

to validate the correlation
with the experimental data.
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T ABL E I I I Ogden material parameters for acrylic sheets (opaque and transparent) between 150 and 190◦C at the crosshead speed of 250 mm/min

Temperature β α 3/2 (αβ) limλ→1
dσ
dλ

Type (◦C) (MPa) (MPa) (MPa) (MPa) Q

Opaque 150 2.0683 0.4311 1.3375 1.3261 0.1664
160 1.7810 0.4000 1.0686 1.0608 0.1948
170 1.3133 0.4690 0.9239 0.9164 0.2128
180 0.7100 0.6590 0.7018 0.6973 0.1251
190 0.7500 0.6000 0.6750 0.6037 0.0996

Transparent 150 128.8800 0.0100 1.9332 1.9133 0.1666
160 90.0090 0.0191 2.5788 1.7035 0.2272
170 85.670 0.0100 1.2851 1.2738 0.3911
180 28.4911 0.0226 0.9658 0.9539 0.4165
190 6.8900 0.0700 0.7235 0.7172 0.1349

T ABL E IV Summary of temperature dependent critical material parametric functions of Mooney-Rivlin and Ogden models for acrylic sheets
(Opaque and Transparent)

Type Mooney-Rivlin model R2 Ogden model R2

Opaque C10 = 8 × 10−6T2 − 0.0024T + 0.1797 0.8164 α = 5 × 10−5T2 − 0.0099T + 0.8332 0.7143
C01 = 2 × 10−5T2 − 0.0097T + 1.4111 0.9960 β = 4 × 10−4T2 − 0.1631T + 18.268 0.9486
E = 6(C10 + C01) = 48.337e−0.022T 0.9939 E = 3/2αβ = 19.026e−0.0179T 0.9658

Transparent C10 = 9 × 10−6T2 − 0.0035T + 0.3011 0.7639 α = 7 × 10−5T2 − 0.0226T + 1.8325 0.8835
C01 = −4 × 10−5T2 + 0.0086T + 0.0866 0.9998 β = −0.0131T2 + 1.3893T + 212.18 0.9549
E = 6(C10 + C01) = 54.697e−0.0201T 0.969 E = 3/2αβ=203.18 e−0.0295T 0.8265

These material parameters vary with changing tem-
peratures in a regular pattern. By fitting these data with
either a polynomial or an exponential function, the re-
lationship between these parameters and temperature
can be formulated [1, 18]. The critical material para-
metric functions are listed in Table IV. Moreover, Figs 6
and 7 display the critical material parametric values,
C10, C01 in Mooney-Rivlin model and α, β in Ogden
model respectively as functions of temperature. Subse-
quently, the initial Young’s modulus E can also be de-
rived in terms of these parameters for various material
temperatures, and the relationship between the Young’s
modulus and temperature can be well described by the
fitted exponential equations with both models, Fig. 8.
The derived 2nd order polynomial and the exponential

Figure 6 Material parameters C10 and C01 of Mooney-Rivlin model vs. temperature by curve fitting with the 2nd order polynomial trendlines for
acrylic sheets, (a) opaque and (b) transparent.

functions using both Mooney-Rivlin and Ogden mod-
els are very helpful to estimate material parameters
within the testing temperature range by interpolation.
However, a superior correlation is yielded from the
two-term Mooney-Rivlin model compared to that from
the single-term Ogden model as it is clearly shown in
Tables II and III that the Q-values between experimen-
tal true stress and calculated Cauchy stress tensor in
the Mooney-Rivlin model are very small (0.003–0.068)
in comparison with that (0.099–0.417) in the Ogden
model. In fact, Mooney-Rivlin model may be treated
as a special alternative of Ogden model. As the better
correlation with the experimental data can be obtained
by using the higher terms of the model, it is convincing
to argue that the utilisation of Mooney-Rivlin model
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Figure 7 Material parameters α and β vs. temperature using Ogden model by curve fitting with the 2nd order polynomial trendlines for acrylic sheets,
(a) opaque and (b) transparent.

Figure 8 Young’s modulus E vs. temperature using (a) Mooney-Rivlin model (E = 6(C10 + C01)) and (b) Ogden model (E = 3/2αβ) by curve
fitting with exponential trendlines for opaque and transparent acrylic sheets.

will increase the accuracy of the following numerical
simulation results.

4. Model validation using PAM-FORMTM

In the numerical analyses of the thermoforming pro-
cesses, PAM-FORMTM, a centred finite differences
explicit computer code, was implemented with the
preparation of numerical models using pre-processor
PAM-GENERISTM and the analytical simulated results
demonstrated by post-processor PAM-VIEWTM . PAM-
GENERISTM allowed the input of material property pa-
rameters, process modeling conditions and control pa-
rameters. PAM-VIEWTM is to instantaneously visualise
the deformed configurations of model, and to exhibit

the results such as applied load/pressure curve, thick-
ness distribution and membrane strain. 2-D membrane
elements and the conversion1 of Mooney-Rivlin mate-
rial parameters to fit Ogden constitutive law in PAM-
FORMTM were used in this study.

5. Simulation of rectangular bubble inflation
The simulation of rectangular bubble inflation was also
conducted with both types of acrylic sheets. Initially,
the sheets (290 mm long × 100 mm wide) were meshed

1Ogden model in PAM-FORMTM establishes a constitutive rela-
tionship with a two-term Mooney-Rivlin model: n = 2, β1 = 2C10,
α1 = 2, β2 = −2C01 and α2 = −2.
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Figure 9 Apparatus of rectangular bubble inflation: (a) pneumatic press; (b) supporting frame; (c) clamping cage; (d) surge chamber; (e) air pressure
valve; (f) pressure gage at the range of 0–250 kPa.

Figure 10 Spatial displacement data acquisition with Microscribe-3DX Digitiser
©R

.
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Figure 11 Profile of rectangular bubble inflation in middle portions for opaque acrylic sheet at the forming temperature 160◦C, (a) differential pressure
20 kPa; (b) differential pressure 40 kPa.

with 1160 quadrilateral shell elements. Information on
material parameters for the rectangular bubble inflation
is illustrated in Table VI. The forming temperature was
set to 160◦C, which has been assumed to be uniform
across the meshed sheet.

T ABL E V Rectangular bubble inflation simulation: Material param-
eters describing Ogden model

Temperature Gauge differential
(◦C) Uniform pressure 20 kPa

Parameter 160◦C and 40 kPa

Opaque type Transparent type
Density (kg/mm3) 1.2 × 10−6 1.2 × 10−6

Number of integration point 3 3
Thickness (mm) 3 2.76
Membrane hourglass coefficient 0.9 0.9
Out-of-plane hourglass coefficient 0.9 0.9
Rotational hourglass coefficient 0.9 0.9
Transverse shear correction factor 0.8333 0.8333
Ogden parameters

α1 2 2
α2 −2 −2
β1(GPa) −1.14 × 10−5 −5.698 × 10−5

β2(GPa) −4.90 × 10−4 −8.13 × 10−4

The validation experiment of the bubble inflation was
conducted using modified Lai’s 2-D free forming ap-
paratus [25], displayed in Fig. 9. Acrlyic sheets of the
same size were prepared and marked with a 5 mm ×
5 mm grid pattern. The sheets were pre-heated in the
infra-red oven monitored by the 1000PID thermal con-
troller before transferring to start the forming process
at 160◦C. During the inflation, based on the air flow
through the pressure transducer, the differential pres-
sure was recorded by utilising the LabView©R PC data
sampling system.

The experimental data, namely the distance from the
apex of the bubble, were obtained along the hoop and
longitudinal directions in the middle portion using a
Microscribe-3DX©R digitiser [26], Fig. 10. The origi-
nal local Cartesian 2-D coordinates were set at grid
point at the bubble apex and the corresponding coordi-
nates of grid points along these two directions could be
easily measured and converted to the relative vertical
distance and grid position. Due to the symmetry of the
bubble, only half grid points in the middle portions were
digitised. Furthermore, the simulation results were
based upon the grid node positions of inflated bubble
model.
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Figure 12 Profile of rectangular bubble inflation in middle portions for transparent acrylic sheet at the forming temperature 160◦C, (a) differential
pressure 20 kPa; (b) differential pressure 40 kPa.

The comparisons between the numerical and exper-
imental results of bubble inflation profiles are shown
in Figs 11 and 12 with the two applied gauge differ-
ential pressures of 20 and 40 kPa. Generally a good
agreement of the bubble profile exists in the hoop di-
rection although slight scattering occurs in the longi-
tudinal direction, especially towards the longitudinal
clamping region of the bubbles. This is probably due to
some material flow between the clamping plates during
the experiments; nevertheless in the numerical simula-
tion it is assumed that the clamped sheet rims and the
clamping plates are fully constrained [27]. The other
reason might be the non-isothermal clamping edge ef-
fects because the temperature in the sheet edge is nor-
mally lower than that in the central region when the
polymeric sheets are heated up in the experiments. This
causes a temperature gradient from the centre of the
sheet to the clamped edge whereas in the simulation,
temperature is assumed to be uniform [1, 6]. The en-
couraging results from this initial free bubble inflation
simulation warrant further investigation of components
with more complex geometry, the details of which will
be reported in a forthcoming paper [28].

6. Concluding remarks
This investigation has studied the material characteris-
tics of two types of acrylic sheets under thermoforming
conditions and the necessary material parameters have
been identified for numerical simulation. The following
concluding remarks can be made based on the observa-
tions during this study:

• From the shrinkage test, both the opaque and trans-
parent acrylic sheets appear to show isotropic ma-
terial characteristics.

• Dramatic elastic effects are demonstrated when the
materials are deformed above Tg. This suggests
that computer modeling on thermoforming acrylic
sheets may be based on the theory of hyperelastic
materials.

• The critical material parametric functions have
been derived by applying least square method
(LSM) to the results obtained from hot tensile tests
in the thermoforming temperature range. These
parametric functions, based on the prescribed
Mooney-Rivlin or Ogden model, provide the ba-
sis for numerical simulation of thermoforming
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processes under both isothermal and non-
isothermal conditions.

• Good validation of the critical material paramet-
ric functions using simple tensile test simulation
establishes the possibility of further implementa-
tions of PAMFORMTM for more complex thermo-
forming shapes. Preliminary numerical results of
bubble inflation profiles also compare well with the
experimental data.
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